
Ego3DPose: Capturing 3D Cues from Binocular Egocentric Views
Taeho Kang

Seoul National University
Seoul, South Korea

taeho.kang@hcs.snu.ac.kr

Kyungjin Lee
Seoul National University

Seoul, South Korea
jin11542@snu.ac.kr

Jinrui Zhang
Central South University

Changsha, China
zhangjinruicsu@gmail.com

Youngki Lee
Seoul National University

Seoul, South Korea
youngkilee@snu.ac.kr

ACM Reference Format:
Taeho Kang, Kyungjin Lee, Jinrui Zhang, and Youngki Lee. 2023. Ego3DPose:
Capturing 3D Cues from Binocular Egocentric Views. In Proceedings of
SIGGRAPH Asia 2023 Conference Papers (SA Conference Papers’23). ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3610548.3618147

A DATA PREPROCESSING
A.1 UnrealEgo
The full dataset of UnrealEgo [Akada et al. 2022] is utilized. We
use the publicly available preprocessing, data loading, and training
code. The dataset provides ground truth 2D and 3D poses, which
we utilize to generate the ground truth for Perspective Embedding
Heatmaps.

A.2 EgoCap
We only use the validation dataset for our evaluation. The 3D an-
notations for the training dataset are not publicly available.

The validation set contains 2D and 3D versions. The 2D set
contains all of the images in the 3D set. Thus, we use images from
the 3D set, and the ground truth 2D joint position is obtained from
the 2D set annotation, while the ground truth 3D pose is gathered
from the 3D set.

The EgoCap dataset’s original image dimension is 1280×1024 as
shown in Fig.1. A large portion of the image is empty. The full view
of the camera approximately covers a circle of 512-pixel radius. In
the prepossessing, images are horizontally cropped, to discard the
out-of-view area. The horizontal focal center is placed to be the
center of the cropped image, resulting in a 1024×1024 image. To fit
our system’s input size, the cropped image is then downsampled to
a 256×256 image.

The ground truth pose is adjusted to fit the unit used by the
UnrealEgo. The UnrealEgo uses a unit length of centimeters for
the ground truth pose, while the EgoCap dataset uses millimeters.
EgoCap dataset consists of poses for 18 joints, including the head.
But following the EgoCap paper, the head 3D pose is not estimated,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Conference Papers’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0315-7/23/12. . . $15.00
https://doi.org/10.1145/3610548.3618147

Figure 1: Sample of 1280×1024 EgoCap dataset image.

Figure 2: The architecture of the Optical Feature Extractor

resulting in a total of 17 joints, and 16 limbs. Note that the UnrealEgo
dataset uses a different set of joints, which consists of 16 joints
including the head.

In the real-world setting, the relative 3D transform of two cam-
eras consists of the rotational component, thus the local pose is
not the same for the two cameras. However, the 3D pose is pro-
vided only for the first camera’s coordinates, so we use the same
view-plane angle and 3D orientation computed in the first camera’s
coordinate system for both views.

B NETWORK DETAILS
Our implementation is based on the open-sourced UnrealEgo’s
implementation. Each of the layers described as a convolutional,
deconvolutional[Zeiler et al. 2010], and fully connected layer is
followed by a batch normalization layer and a leaky ReLU with a
negative slope of 0.2.

https://doi.org/10.1145/3610548.3618147
https://doi.org/10.1145/3610548.3618147

SA Conference Papers’23, December 12–15, 2023, Sydney, NSW, Australia Taeho Kang, Kyungjin Lee, Jinrui Zhang, and Youngki Lee

Table 1: The hyperparameters for the decoder layers in the
optical feature extractor.

Layer Dimension Input Channels Output Channels
D1 16×16 3072 2048
D2 32×32 2560 1024
D3 64×64 1280 1024

B.1 Optical Feature Extraction
Two networks for the Joint Position Heatmaps and the Perspective
Embedding Heatmap with the same architecture are trained for
optical feature extraction. The ResNet-18 [He et al. 2016] in the
U-Nets [Ronneberger et al. 2015] of the optical feature extractors
are initialized with pre-trained weights ImageNet1K_1[Deng et al.
2009] available on PyTorch [Paszke et al. 2019].

Two ResNet are used in one U-Nets for each optical feature
extractor to take stereo input images. In the torch’s ResNet-18 im-
plementation, the output of base layers of index 4, 5, 6, and 7 are
concatenated to the U-Net’s decoder parts, as shown in Fig. 2. The
output is processed by an 1 by 1 convolutional layer, to the same
number of channels. In the decoder, the features from two ResNet
base layer 7 are concatenated and upsampled after the process.
The next layers take the concatenated processed output from two
ResNets and the upsampled features from the previous layer. Each
layer consists of one convolutional layer with the specified num-
ber of channels of kernel size 3, and an upsample layer following
that. Table 1 describes the total input channels (the upsampled
feature channels and the concatenated ResNet features) and output
channels. Finally, one convolutional layer (C in Fig. 2) takes the D3
layer’s output and outputs heatmaps, using a kernel size of 1.

B.2 Heatmap Encoder
The heatmap encoder consists of 3 convolutional layers and 3 fully-
connected layers. The first convolutional takes all of the heatmaps.
Each convolutional layer has 64, 128, and 256 channels of features,
using a kernel size of 4, stride of 2, and padding of 1. The output of
256 channels of features is flattened and processed by the following
fully connected layers. Each fully connected layer has an output
size of 2048, 512, and 20. The 20 is the size of the embedding vector
used by the 3D Pose Decoder, and the Heatmap Reconstructor.

B.3 3D Pose Decoder
The 3D pose decoder consists of 3 fully connected layers. The first
layer takes 20-dimensional embedding from the Heatmap Encoder
and 14 by 3 estimated orientations from the Stereo Matcher, flat-
tened and concatenated together as a vector. The first two layers
output 32-dimensional embeddings, and the last layer outputs 16
by 3 estimated 3D pose.

B.4 Stereo Matcher
The stereo matcher module has a similar architecture to the com-
bination of the Heatmap Encoder and the 3D Pose Decoder, with
different input, intermediate embedding, and output sizes. The first
difference is that it takes only 4 channels of heatmaps, the one
set of Perspective Embedding Heatmaps. The output embedding
size, from the Heatmap Encoder-like architecture is 10. The final

decoder’s output is a 3-dimensional vector, which corresponds to
the estimated 3D orientation.

B.5 Heatmap Reconstructor
The Heatmap Reconstructor consists of 3 fully-connected layers
and 3 deconvolutional layers. The fully connected layers take 20-
dimensional embeddings and output 512, 2048, and one last 16384-
dimensional vector that is reshaped to 256 channels of 8 by 8 fea-
tures. The deconvolutional layer outputs 128, 64, and the total num-
ber of heatmaps channels in order. All of the deconvolutional layer
uses a kernel size of 4, stride of 2, and padding of 1. The deconvolu-
tional layer corresponds to PyTorch’s torch.nn.ConvTranspose2d
module.

C LIMITATIONS AND FUTUREWORKS
There still remain several limitations. Occlusion in the egocentric
pose estimation is still a challenging problem as many motions
suffer from high occlusion, especially in the lower body. To deal
with it, temporal optimization of the output poses is an important
direction [Wang et al. 2021]. Additional inverse kinematics methods
can be also useful for virtual character applications.

Secondly, the trained network can overfit the camera’s distor-
tion used in the training dataset. The 2D-to-3D lifting is an inher-
ently ambiguous problem, without given camera parameters. Many
egocentric methods focus on shared camera setups for 3D pose
estimation. However, individual camera’s distortion patterns may
vary and the method can exhibit larger errors on cameras with
different distortions. The Stereo Matcher network can introduce
reliance on the binocular camera’s configuration, as it attempts to
estimate 3D pose from stereo correspondences. Recently, a 2D-to-
3D lift-up model applicable for different camera optics and setups is
suggested [Miura and Sako 2022]. Such a generalizable framework
that applies to various egocentric camera setups is a promising
direction for future work.

Lastly, our real-world evaluation has several limitations in its va-
riety, as a result of experimenting only on publicly available dataset.
Evaluation in the real-world setting EgoCap dataset has a limited
number of subjects and frames since we evaluated only the portion
of the dataset with 3D pose annotations. It also lacks a variety of
motion types, as it consists of activities while standing. Finally,
due to the difficulty of egocentric dataset collection, the dataset is
captured only in a lab environment with a green screen. The per-
formance can further be experimented with more comprehensive
real-world datasets.

D ADDITIONAL EXPERIMENTS
D.1 Impact of Using Joint Position Heatmap
We show the impact of using the Joint Position Heatmap when
it is used together with the Perspective Embedding Heatmap. We
experimented with our system with only one type of heatmap and
both. For the Joint Position Heatmap-only experiment, the result
in Effectiveness of Perspective Embedding Heatmap section is used.
The result in Table 2 reveals that using only Perspective Embed-
ding Heatmap outperforms the method using only Joint Position
Heatmaps by 4.7% in MPJPE, and using both outperforms the latter
by 8.8%. Perspective Embedding Heatmap contains joint position

Ego3DPose: Capturing 3D Cues from Binocular Egocentric Views SA Conference Papers’23, December 12–15, 2023, Sydney, NSW, Australia

information when it successfully estimates the 3D information. Its
confidence is directly connected to its estimate of 3D angle. Thus,
if the estimation of the 3D angle fails, the network may not out-
put meaningful values for the positional estimate, even though
the visual cue is available for the 2D position. In those cases, the
traditional Joint Position Heatmap provides a fall-back option by
focusing on extracting 2D information.

Table 2: Comparison of results on UnrealEgo dataset, using
our system with Joint Position Heatmap (JH) only, Perspec-
tive Embedding Heatmap (PH) only, and both.

Error
Heatmaps JH PH JH + PH

MPJPE 66.72 63.60 60.82
PA-MPJPE 52.29 49.49 48.47

D.2 Per Joint Error Distribution
We plot the distribution of pose estimation error on the UnrealEgo
dataset for two systems, UnrealEgo [Akada et al. 2022] and our
Ego3DPose, in Figure. 3. In this plot, we combined the results of
corresponding joints on the left and right as distinct samples for one
category. "upperarm", "lowerarm", and "hand" corresponds to upper
body joints, and "thigh", "calf", "foot", and "ball" are lower body
joints. The distribution is visualized as a Cumulative Distribution
Function (CDF). As previous works [Tome et al. 2019][Zhao et al.
2021] suggest, lower body parts generally had larger estimation
errors. In the experiment, however, the estimation of "thigh" appears
to be accurate. This is due to the local pose’s definition of the
UnrealEgo dataset. The local pose is relative to the pelvis’ position,
and since the thighs are directly connected to the pelvis, it is easy
to estimate its position. Our method shows more improvement on
the upper body, which has more visibility than the lower body,
particularly noticeable when comparing "lowerarm", "hand", and
"calf". It indicates that our method is more effective at extracting
visible cues.

REFERENCES
Hiroyasu Akada, Jian Wang, Soshi Shimada, Masaki Takahashi, Christian Theobalt,

and Vladislav Golyanik. 2022. UnrealEgo: A New Dataset for Robust Egocentric 3D
Human Motion Capture. In European Conference on Computer Vision (ECCV).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 248–255.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of 2016 IEEE Conference on Computer
Vision and Pattern Recognition (Las Vegas, NV, USA) (CVPR ’16). IEEE, 770–778.
https://doi.org/10.1109/CVPR.2016.90

Teppei Miura and Shinji Sako. 2022. Simple yet Effective 3D Ego-Pose Lift-up Based on
Vector and Distance for a Mounted Omnidirectional Camera. Applied Intelligence
53, 3 (may 2022), 2616–2628. https://doi.org/10.1007/s10489-022-03417-3

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. http://arxiv.org/abs/1505.04597
cite arxiv:1505.04597Comment: conditionally accepted at MICCAI 2015.

Figure 3: CDF of joint pose estimation error of the UnrealEgo
(A) and Ego3DPose (B) in mm unit.

Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan Badino. 2019. xR-EgoPose:
Egocentric 3D Human Pose from an HMD Camera. In Proceedings of the IEEE
International Conference on Computer Vision. 7728–7738.

Jian Wang, Lingjie Liu, Weipeng Xu, Kripasindhu Sarkar, and Christian Theobalt. 2021.
Estimating Egocentric 3D Human Pose in Global Space. arXiv:2104.13454 [cs.CV]

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. 2010. Decon-
volutional networks. In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. 2528–2535. https://doi.org/10.1109/CVPR.2010.5539957

Dongxu Zhao, Zhen Wei, Jisan Mahmud, and Jan-Michael Frahm. 2021. EgoGlass:
Egocentric-View Human Pose Estimation From an Eyeglass Frame. In 2021 Inter-
national Conference on 3D Vision (3DV). 32–41. https://doi.org/10.1109/3DV53792.
2021.00014

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s10489-022-03417-3
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2104.13454
https://doi.org/10.1109/CVPR.2010.5539957
https://doi.org/10.1109/3DV53792.2021.00014
https://doi.org/10.1109/3DV53792.2021.00014

	A Data Preprocessing
	A.1 UnrealEgo
	A.2 EgoCap

	B Network Details
	B.1 Optical Feature Extraction
	B.2 Heatmap Encoder
	B.3 3D Pose Decoder
	B.4 Stereo Matcher
	B.5 Heatmap Reconstructor

	C Limitations and Future Works
	D Additional Experiments
	D.1 Impact of Using Joint Position Heatmap
	D.2 Per Joint Error Distribution

	References

