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Supplementary Material

A. Overview
The supplementary material contains the following:
• Dataset Processing
• Implementation
• Training
• Experiment
• Example Figure
• Limitations and Future Works

B. Dataset Processing
We explain the details of the train and test dataset we used
in this section. Our method requires a 2D and 3D pose an-
notation and stereo input images. The 2D annotation is nec-
essary for generating the heatmaps.

B.1. UnrealEgo

We utilize the full dataset, including metadata files and pre-
processed pickles. The public Ego3DPose [5] code loads
metadata and pickles. Their code adds 2D and 3D pose data
in the camera coordinate system and their limb heatmap rep-
resentation in the pickle files. Our method uses these final
pickles.

B.2. EgoCap

We used publicly available 2D pose annotation on the train
set. Additionally, we got the full ground truth 3D pose for
the train set of the EgoCap [9] dataset from the authors. In
the fisheye views of the dataset, images are projected only in
the circular area due to strong distortion. Thus, the original
images contain areas that do not have real views. Following
the Kang et al. [5], we cropped the image horizontally into a
square area centered at the x-axis focal center (fx) provided
in the dataset calibration data. We resized the images to 256
by 256 images to fit our model.

The dataset has a train set and 2D and 3D validation sets.
The 3D validation set contains a ground truth 3D pose and
is used for testing. The 2D validation dataset provides the
2D annotation for the images in the 3D validation sets from
a subject labeled 7. The 3D pose is converted from a mm
to a cm unit to scale the pose loss in accordance with the
UnrealEgo dataset.

C. Implementation
C.1. Grid ViT Heatmap Encoder

The 64 × 64 sized heatmaps are put into one image with
resolution 384 × 384. The image comprises 36 areas as
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Figure 1. The ViT encoder architecture.

a 6 × 6 grid. The number of joint heatmaps is 30 for the
UnrealEgo [2] dataset and 34 for the EgoCap [9]. The
heatmaps fill in the grid in order. The areas that do not
correspond to any heatmap are masked in the ViT encoder
module and don’t impact the output.

We adopt the ViT encoder [3] architecture. Our imple-
mentation adopts the public Transformers [13] module ViT-
Model class for the PyTorch [8]. We removed the [CLS]
token since we are not using the module for a classification
task. Doing so improves pose estimation accuracy empir-
ically. The module follows the standard ViT [3] encoder
architecture shown in Fig. 1 that takes the input embedding
z and outputs feature embedding z′.

The ViT encoder takes embeddings of size 1024 per each
of 32NJ patches, z = [z1, z2, . . . , z32NJ

]. The multi-head
attention layer has 8 heads. The intermediate layer size of
the MLP is 4096. The Grid ViT Heatmap Encoder uses
three ViT encoder layers. It outputs a total 16384 size of the
embedding vector from 16 patches for each heatmap. The
embedding vector is then compressed with MLP denoted
EK in the paper. The MLP has ReLU [1] non-linearity for
the intermediate layers. The MLP’s hidden sizes of the first
two layers are 2048 and 512, and the last layer outputs a
final embedding of size 128.

C.2. Propagation Network

In an extension of the typical LSTM [4], the Propagation
Unit’s relational features, joint features, hidden and cell
states, and gate outputs all have the same size. We chose
256 for the size.



C.2.1 Limb Heatmap Encoder

The limb heatmap encoder ER extracts relational features.
The encoder consists of three layers with the same structure
as the final MLP layers of the Grid ViT Heatmap Encoder,
with only an input size difference. The input two-channeled
limb heatmap [5] has 2 × 64 × 64 size. The encoder takes
it after flattening it. The encoder consists of three fully con-
nected layers, the first two layers with 2048 and 512 output
size, with the ReLU [1] activation, and the final layer out-
puts the embedding with a size 128.

C.2.2 Second Layer of the PU

The second layer of PU does not take distinct relational and
joint features. It takes the parent joint’s second layer cell
and hidden state with the first layer’s hidden state of the
joint. Since hidden states from different layers are used in
this section, let’s denote the n-th layer hidden states of i-th
joint hn,i. The additional forget gate in the second layer gi
controls the parent joint’s second PU layer’s hidden state,
resulting in the modified hidden state h′

2,i. This is formu-
lated as follows:

gi = σ(Wg · h1,i + bg) (1)
h′
2,i = gi ⊙ h2,parent(i) (2)

The modified parent hidden state and the joint’s first
layer hidden state are input for the inner LSTM [4].

C.2.3 Internal LSTM of the PU

We explain the formulation of the LSTM [4] inside the PU
in more detail here.
Formulation of typical LSTM. The LSTM is formulated
as follows, where hi−1 denotes the hidden state of the pre-
vious step, ci−1 denotes the cell state of the previous step,
and xi denotes the input. Here, W and b denote weights
and biases for each gate. The symbol ⊙ represents element-
wise multiplication, and the + sign represents element-wise
addition. tanh and σ denote the hyperbolic tangent and sig-
moid activation.

fi = σ(Wf · [hi−1, xi] + bf ) (3)
ii = σ(Wi · [hi−1, xi] + bi) (4)
oi = σ(Wo · [hi−1, xi] + bo) (5)

c̃i = tanh(Wc · [hi−1, xi] + bc) (6)
ci = fi ⊙ ci−1 + ii ⊙ c̃i (7)

hi = oi ⊙ tanh(ci) (8)

The fi, ii, and oi are forget, input, and output gates. c̃i de-
notes the candidate cell value. hi and ci are the final hidden
and cell state for step i.

Formulation of internal LSTM. Unlike the LSTM taking
the cell and hidden state, the internal LSTM of the first PU
layer takes three states in addition to input joint features.
The three states are the modified parent’s hidden state h′

i,
the modified relational feature of the joint r′i, and the cell
state of the parent cparent(i). The input is joint features FJ,i.

This section explains the first and second layers together;
thus, we denote the n-th layer of i-th joint with a n, i sub-
script, as in hn,i for the hidden state. In the computation
of the forget, input, and output gates and the candidate
cell value, a concatenated vector of the modified parent’s
hidden state and relational features, and the joint features
[h′

1,i, r
′
1,i,FJ,i] replaces [hi−1, xi].

f1,i = σ(W1,f · [h′
1,i, r

′
i,FJ,i] + b1,f ) (9)

i1,i = σ(W1,i · [h′
1,i, r

′
i,FJ,i] + b1,i) (10)

o1,i = σ(W1,o · [h′
1,i, r

′
i,FJ,i] + b1,o) (11)

c̃1,i = tanh(W1,c · [h′
1,i, r

′
i,FJ,i] + b1,c) (12)

For the second layer, the modified second layer parent
hidden state h′

2,i from the Sec. C.2.2 takes the place of
hi−1. The previous layer’s hidden state h1,i replaces input
xi, analogous to the standard multi-layered LSTM.

f2,i = σ(W2,f · [h′
2,i, h1,i] + b2,f ) (13)

i2,i = σ(W2,i · [h′
2,i, h1,i] + b2,i) (14)

o2,i = σ(W2,o · [h′
2,i, h1,i] + b2,o) (15)

c̃2,i = tanh(W2,c · [h′
2,i, h1,i] + b2,c) (16)

The Propagation Unit takes features from the parent
joint, not the previous index. In the computation of the final
cell and hidden state, both layers of PU take cn,parent(i) in-
stead of ci−1 in the formula. The hidden state is computed
in the same way.

cn,i = fn,i ⊙ cn,parent(i) + in,i ⊙ c̃n,i (17)
hn,i = on,i ⊙ tanh(cn,i) (18)

D. Training
D.1. Hardware Setup

We trained and tested our method on a server with NVIDIA
RTX A6000 GPU and AMD EPYC 7313 16-Core Processor
CPU.

D.2. Heatmap Estimator

The heatmap estimator is trained using UnrealEgo [2] code
and their scripts for the UnrealEgo dataset. The default
configuration utilizes Adam [6] optimizer with a learning
rate 10−3. They train the network for 10 epochs, the later



5 epochs with linear decay, with batch size 16. For the
EgoCap dataset, we trained the heatmap estimators for 30
epochs with the same setup. Linear decay is used for the
last 15 epochs proportionally.

When hasty convergence, where all heatmap values
converge to 0, is detected, the training is automatically
restarted, following the protocol of Kang et al. [5].

D.3. EgoTAP Network

The network is trained with the AdamW [7] optimizer with
pretrained and frozen heatmap estimator weight. The learn-
ing rate of 10−3 is used with 16 epochs with a cosine an-
nealing scheduler, with batch size 32. Early epochs use a
linear warmup, one epoch for the UnrealEgo [2], and two
epochs for the EgoCap [9] dataset.

D.4. Loss

D.4.1 EgoTAP Network

EgoTAP has two loss terms: a pose error loss (i.e., joints’
average Euclidean distance) and cosine-similarity loss [11]
that focuses on estimating the correct 3D orientation for
each limb.

The pose error loss is defined as follows. Given two 3D
joint poses: the predicted pose p′i and the ground truth pose
pi, for i = 1, . . . , J , where J is the total number of joints:

Lp =
1

J

J∑
i=1

∥p′i − pi∥2 (19)

The cosine similarity loss is then defined as follows.
A limb pose vector for a particular joint is obtained by
subtracting the pose of its parent joint from its pose, i.e.,
vi = pi−pparent(i) and v′i = p′i−p′parent(i) for the ground
truth and predicted poses, respectively. Given these vectors,
the cosine similarity between two limb pose vectors is cal-
culated using their inner product:

Lc =
1

J − 1

J∑
i=2

∥ vi · v′i
∥vi∥2∥v′i∥2

(20)

Note that the root joint is ignored since it does not have
a parent joint.

The final loss term is a weighted sum of two losses,
where we choose wp = 0.1 and wc = −0.01. The cosine
similarity loss weight has a negative sign because higher
cosine similarity indicates a more accurate pose.

L = wpLp + wcLc (21)

D.4.2 Heatmap Reconstruction Network for Ablation

We adopted the heatmap decoder proposed by Tome et
al. [11] for the heatmap reconstruction in the ablation study

of the Grid ViT Heatmp Encoder. The network with only
mean squared loss struggles from early convergence to out-
putting near-zero valued heatmaps. The problem is more
severe than the heatmap estimator network since the recon-
struction network does not contain specialized architecture
like the U-Net [10], which helps the heatmap generation
through the multi-resolution features.

Thus, additional loss to match the heatmap’s minimum
and maximum values is added if the mean squared loss is
higher than the threshold to prevent the network training
in the ablation studies from converging to outputting only
zeros. We set the threshold to a value empirically found
sufficient to ensure avoidance of the zero-only convergence.
The loss term guides the network to output a peak in the
heatmap, as joint heatmaps do.

The heatmap reconstruction’s target is to minimize the
mean squared loss between the predicted heatmap H , and
reconstructed heatmap H′. This is computed as follows:

Lr =
1

N

N∑
i=1

(Hi −H ′
i)

2 (22)

The min-max loss applies only if the mean squared loss
is higher than threshold θ. The threshold is 5.5 ∗ 10−4. It is
computed as follows:

Lmin =
1

N

N∑
i=1

|min(Hi)−min(H ′
i)| (23)

Lmax =
1

N

N∑
i=1

|max(Hi)−max(H ′
i)| (24)

Lm =

{
Lmin + Lmax if Lr > θ

0 otherwise
(25)

The weight for the reconstruction wr is set to 1 and the
weight for the min-max penalty wm is set to 10−3, resulting
in the total loss:

L = wr · (Lr + wm · Lm) (26)

The loss term does not impact the final result once the
network avoids the early convergence and stabilizes. The
zero output convergence is still observed for the CNN en-
coder embedding, so the training was restarted until it did
not converge to output only zeros. Such an additional loss
term is necessary to get meaningful non-zero reconstruction
from the output of the CNN heatmap encoder, showing the
difficulty of heatmap information recovery from its embed-
dings.



MPJPE (PA-MPJPE)

Method Jumping Falling Down Exercising Pulling Singing Rolling Crawling Laying

EgoGlass [15] 78.93(63.85) 123.80(92.71) 94.21(69.85) 79.41(55.41) 68.16(50.25) 100.53(87.26) 173.69(111.51) 106.41(86.42)
UnrealEgo [2] 61.66(49.46) 108.73(78.02) 77.14(58.87) 57.01(43.51) 52.61(37.58) 73.38(64.56) 162.90(102.15) 82.60(67.47)
Ego3DPose [5] 52.12(43.29) 86.08(71.72) 67.52(56.39) 48.92(37.02) 43.86(34.54) 74.24(64.81) 138.47(92.93) 78.13(67.23)
Ours 43.05(37.31) 75.77(63.48) 52.76(46.21) 34.45(26.82) 33.96(29.10) 52.24(47.58) 126.23(91.46) 66.38(59.56)

Method Sitting on the Ground Crouching Crouching and Turning Crouching to Standing Crouching-Forward Crouching-Backward Crouching-Sideways Standing-Whole Body

EgoGlass 204.35(147.99) 121.76(100.12) 130.24(104.28) 84.31(59.67) 82.84(66.06) 90.36(76.83) 101.37(78.81) 69.78(52.59)
UnrealEgo 190.26(144.27) 96.69(79.29) 116.59(99.94) 66.20(44.92) 56.10(46.62) 62.54(46.21) 72.35(55.87) 52.91(39.14)
Ego3DPose 143.44(122.93) 82.01(67.94) 104.24(83.98) 58.74(41.34) 48.60(38.81) 47.36(36.05) 57.85(48.83) 45.69(35.47)
Ours 121.24(103.27) 67.27(60.07) 89.97(70.78) 41.91(28.68) 33.47(29.52) 34.08(28.30) 40.21(38.51) 32.77(28.27)

Method Standing-Upper Body Standing-Turning Standing to Crouching Standing-Forward Standing-Backward Standing-Sideways Dancing Boxing

EgoGlass 69.24(49.36) 77.77(60.27) 83.86(81.65) 76.75(63.23) 78.40(59.83) 82.71(66.46) 82.84(65.59) 66.98(49.13)
UnrealEgo 50.97(34.86) 60.42(46.27) 48.09(40.5) 56.23(47.90) 57.14(44.90) 63.10(50.86) 64.73(51.79) 52.13(38.36)
Ego3DPose 44.14(32.99) 51.45(41.91) 55.66(45.08) 49.48(44.65) 45.35(36.52) 52.25(44.97) 55.30(46.47) 41.55(32.14)
Ours 31.29(25.51) 41.24(35.55) 37.07(30.28) 39.64(38.06) 32.43(30.25) 39.34(37.94) 42.14(38.39) 29.97(25.69)

Method Wrestling Soccer Baseball Basketball American Football Golf

EgoGlass 84.23(62.81) 81.57(60.59) 76.20(56.11) 78.33(57.30) 102.54(84.03) 69.69(48.15)
UnrealEgo 67.85(52.73) 67.09(51.43) 62.15(48.60) 64.73(47.79) 89.57(68.49) 55.87(40.34)
Ego3DPose 57.96(45.94) 59.56(45.23) 56.21(42.17) 56.02(41.94) 77.89(62.56) 48.10(36.01)
Ours 44.15(39.38) 48.27(38.56) 44.83(35.92) 45.19(36.78) 65.30(54.41) 38.97(31.25)

Table 1. Quantitative evaluation results on the UnrealEgo dataset per category.

UnrealEgo [2] EgoCap [9]

Estimated Heatmap 41.06 55.38
Ground Truth Heatmap 6.63 26.63

Table 2. Comparison of pose estimation error (MPJPE) of our
method, with estimated and ground truth heatmaps provided as
input. Columns indicate two datasets.

E. Experiment

F. Categorical Evaluation on the UnrealEgo
dataset

Table 1 categorically shows the result on the UnrealEgo [2]
dataset. Metrics from all three baseline methods, Ego-
Glass [15], UnrealEgo [2], and Ego3DPose [5] are shown
with our method. The MPJPE values are outside the
bracket, and the PA-MPJPE values are inside the bracket.

F.1. Per Joint Error Distribution

Fig. 2 shows the CDF (Cumulative Distribution Function)
of the error of each joint. Two results show one from the
UnrealEgo [2] method as an example of the baseline in the
introduction and one for our method, both evaluated on the
UnrealEgo dataset.

The thigh is directly attached to the pelvis, which is the
origin of the local pose definition in the dataset. Thus,
for all methods, the thigh has the lowest errors among all
joints. Lower body joints, calf, foot, and balls generally
have significantly higher errors than other joints, except for
the hands, which have larger errors than the calf. The error
of the hand and the lower arm gets much closer to the upper
arm in our method, showing the benefit of the propagation.

F.2. Impact of the Heatmap Estimation Accuracy

We experimented with our architecture’s performance when
the ground truth heatmaps were provided instead of the es-
timated heatmaps. Table 2 reveals that the limited 2D pose
information from the view is a key bottleneck for egocentric
pose estimation. The full 2D pose provided by the ground
truth heatmap reduces error significantly. Despite the bet-
ter view provided by the camera attached far from the head,
the EgoCap has a higher estimation error with ground truth
heatmaps. A relatively small dataset volume for training
can also be a bottleneck.

F.3. Impact of ViT Backbone Size

Experiments revealed that the bottleneck of the pose esti-
mation accuracy is not in the computational capacity of the
backbone. We experimented with up to 12 layers of the
ViT encoders and 8 times larger feature sizes in the ViT en-
coder. No notable improvement was observed compared to
the smaller backbone we chose. The UnrealEgo [2] shows
consistent experimental results that the larger ResNet back-
bones do not improve the pose estimation accuracy.

G. Example Figure
G.1. Limb Heatmaps

The main text mentions that the limb heatmap estimation is
less accurate on the EgoCap [9]. The heatmap visualization
in Fig. 3 shows noisy lines for limbs.

H. Limitations and Future Works
EgoTAP is limited to a single frame input and relies fully
on visual cues. The result with the EgoTAP on motions
with severe occlusion, such as “Crawling” and “Sitting on
the Ground”, has very high error compared to other mo-
tion categories as shown in Table 1. Unlike many recently



(a) UnrealEgo [2]

(b) Ours

Figure 2. CDF of errors for each joint in the UnrealEgo [2] dataset
with their method.

(a) EgoCap [9] dataset (b) UnrealEgo [2] dataset

Figure 3. Estimated limb heatmaps on the test set of the EgoCap
(Left) and UnrealEgo (Right).

proposed general pose estimation methods, the egocentric
setup’s exploration of utilizing the temporal context is lim-
ited. For the egocentric view with a limited view, the invis-
ible joints’ pose can benefit significantly from the temporal
context. For one example in the egocentric setup, Wang.
et al. [12] applied temporal optimization using a variational
autoencoder for improved pose estimation in the global co-
ordinate.

The method’s applicability can further be tested on
monocular and different potential egocentric camera se-
tups. The Propagation Network is based on the stereo setup,
which provides sufficient information for a 3D pose when
the joint is visible from both views. Thus, the propagation
scheme helps estimate the child’s joint pose. While the 3D
pose estimation from the single heatmap is not feasible in
the monocular setup, pose space is highly constrained, and
our method can also be applicable potentially with modifi-
cation.

The Propagation Network applies to an egocentric view
with a specific characteristic. The method itself lacks dy-
namicity like the GCN-based method [14], which would
make it applicable to many different situations. The tree hi-
erarchy assumption still holds for arbitrary root joints in the
skeletal hierarchy, giving room for more dynamicity. Ap-
plying such a tree hierarchy-based network has the potential
for a specific joint-related situation, such as collision. Such
application remains a future work.
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